Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(3): 684-697, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38413834

RESUMEN

Although autophagy sequesters Mycobacterium tuberculosis (Mtb) in in vitro cultured macrophages, loss of autophagy in macrophages in vivo does not result in susceptibility to a standard low-dose Mtb infection until late during infection, leaving open questions regarding the protective role of autophagy during Mtb infection. Here we report that loss of autophagy in lung macrophages and dendritic cells results in acute susceptibility of mice to high-dose Mtb infection, a model mimicking active tuberculosis. Rather than observing a role for autophagy in controlling Mtb replication in macrophages, we find that autophagy suppresses macrophage responses to Mtb that otherwise result in accumulation of myeloid-derived suppressor cells and subsequent defects in T cell responses. Our finding that the pathogen-plus-susceptibility gene interaction is dependent on dose has important implications both for understanding how Mtb infections in humans lead to a spectrum of outcomes and for the potential use of autophagy modulators in clinical medicine.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Linfocitos T , Macrófagos/microbiología , Mycobacterium tuberculosis/fisiología , Autofagia
2.
Immunohorizons ; 6(7): 416-429, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790340

RESUMEN

The three types of IFN have roles in antimicrobial immunity and inflammation that must be properly balanced to maintain tissue homeostasis. For example, IFNs are elevated in the context of inflammatory bowel disease and may synergize with inflammatory cytokines such as TNF-α to promote tissue damage. Prior studies suggest that in mouse intestinal epithelial cells (IECs), type III IFNs are preferentially produced during viral infections and are less cytotoxic than type I IFN. In this study, we generated human IEC organoid lines from biopsies of ileum, ascending colon, and sigmoid colon of three healthy subjects to establish the baseline responses of normal human IECs to types I, II, and III IFN. We found that all IFN types elicited responses that were qualitatively consistent across intestinal biopsy sites. However, IFN types differed in magnitude of STAT1 phosphorylation and identity of genes in their downstream transcriptional programs. Specifically, there was a core transcriptional module shared by IFN types, but types I and II IFN stimulated unique transcriptional modules beyond this core gene signature. The transcriptional modules of type I and II IFN included proapoptotic genes, and expression of these genes correlated with potentiation of TNF-α cytotoxicity. These data define the response profiles of healthy human IEC organoids across IFN types, and they suggest that cytotoxic effects mediated by TNF-α in inflamed tissues may be amplified by a simultaneous high-magnitude IFN response.


Asunto(s)
Organoides , Factor de Necrosis Tumoral alfa , Animales , Citocinas/metabolismo , Células Epiteliales/metabolismo , Humanos , Intestinos , Ratones , Organoides/metabolismo
3.
Elife ; 112022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35137688

RESUMEN

Interferon-lambda (IFN-λ) protects intestinal epithelial cells (IECs) from enteric viruses by inducing expression of antiviral IFN-stimulated genes (ISGs). Here, we find that bacterial microbiota stimulate a homeostatic ISG signature in the intestine of specific pathogen-free mice. This homeostatic ISG expression is restricted to IECs, depends on IEC-intrinsic expression of IFN-λ receptor (Ifnlr1), and is associated with IFN-λ production by leukocytes. Strikingly, imaging of these homeostatic ISGs reveals localization to pockets of the epithelium and concentration in mature IECs. Correspondingly, a minority of mature IECs express these ISGs in public single-cell RNA sequencing datasets from mice and humans. Furthermore, we assessed the ability of orally administered bacterial components to restore localized ISGs in mice lacking bacterial microbiota. Lastly, we find that IECs lacking Ifnlr1 are hyper-susceptible to initiation of murine rotavirus infection. These observations indicate that bacterial microbiota stimulate ISGs in localized regions of the intestinal epithelium at homeostasis, thereby preemptively activating antiviral defenses in vulnerable IECs to improve host defense against enteric viruses.


Asunto(s)
Enterovirus/fisiología , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/inmunología , Receptores de Interferón/genética , Animales , Fenómenos Fisiológicos Bacterianos , Femenino , Homeostasis , Masculino , Ratones , Receptores de Interferón/metabolismo
4.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32847859

RESUMEN

Interferon (IFN) family cytokines stimulate genes (interferon-stimulated genes [ISGs]) that are integral to antiviral host defense. Type I IFNs act systemically, whereas type III IFNs act preferentially at epithelial barriers. Among barrier cells, intestinal epithelial cells (IECs) are particularly dependent on type III IFN for the control and clearance of virus infection, but the physiological basis of this selective IFN response is not well understood. Here, we confirm that type III IFN treatment elicits robust and uniform ISG expression in neonatal mouse IECs and inhibits the replication of IEC-tropic rotavirus. In contrast, type I IFN elicits a marginal ISG response in neonatal mouse IECs and does not inhibit rotavirus replication. In vitro treatment of IEC organoids with type III IFN results in ISG expression that mirrors the in vivo type III IFN response. However, IEC organoids have increased expression of the type I IFN receptor relative to neonate IECs, and the response of IEC organoids to type I IFN is strikingly increased in magnitude and scope relative to type III IFN. The expanded type I IFN-specific response includes proapoptotic genes and potentiates toxicity triggered by tumor necrosis factor alpha (TNF-α). The ISGs stimulated in common by type I and III IFNs have strong interferon-stimulated response element (ISRE) promoter motifs, whereas the expanded set of type I IFN-specific ISGs, including proapoptotic genes, have weak ISRE motifs. Thus, the preferential responsiveness of IECs to type III IFN in vivo enables selective ISG expression during infection that confers antiviral protection but minimizes disruption of intestinal homeostasis.IMPORTANCE Enteric viral infections are a major cause of gastroenteritis worldwide and have the potential to trigger or exacerbate intestinal inflammatory diseases. Prior studies have identified specialized innate immune responses that are active in the intestinal epithelium following viral infection, but our understanding of the benefits of such an epithelium-specific response is incomplete. Here, we show that the intestinal epithelial antiviral response is programmed to enable protection while minimizing epithelial cytotoxicity that can often accompany an inflammatory response. Our findings offer new insight into the benefits of a tailored innate immune response at the intestinal barrier and suggest how dysregulation of this response could promote inflammatory disease.


Asunto(s)
Citocinas/inmunología , Mucosa Intestinal/inmunología , Infecciones por Rotavirus/inmunología , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT2/inmunología , Factor de Necrosis Tumoral alfa/toxicidad , Animales , Animales Recién Nacidos , Citocinas/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/virología , Regulación de la Expresión Génica , Humanos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides/efectos de los fármacos , Organoides/inmunología , Organoides/virología , Elementos de Respuesta , Rotavirus/efectos de los fármacos , Rotavirus/crecimiento & desarrollo , Rotavirus/patogenicidad , Infecciones por Rotavirus/genética , Infecciones por Rotavirus/patología , Infecciones por Rotavirus/virología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT2/genética , Transducción de Señal , Replicación Viral
5.
PLoS Pathog ; 15(7): e1007940, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31329638

RESUMEN

Human norovirus (HNoV) is the leading cause of acute gastroenteritis and is spread by fecal shedding that can often persist for weeks to months after the resolution of symptoms. Elimination of persistent viral reservoirs has the potential to prevent outbreaks. Similar to HNoV, murine norovirus (MNV) is spread by persistent shedding in the feces and provides a tractable model to study molecular mechanisms of enteric persistence. Previous studies have identified non-structural protein 1 (NS1) from the persistent MNV strain CR6 as critical for persistent infection in intestinal epithelial cells (IECs), but its mechanism of action remains unclear. We now find that the function of CR6 NS1 is regulated by apoptotic caspase cleavage. Following induction of apoptosis in infected cells, caspases cleave the precursor NS1/2 protein, and this cleavage is prevented by mutation of caspase target motifs. These mutations profoundly compromise CR6 infection of IECs and persistence in the intestine. Conversely, NS1/2 cleavage is not strictly required for acute replication in extra-intestinal tissues or in cultured myeloid cells, suggesting an IEC-centric role. Intriguingly, we find that caspase cleavage of CR6 NS1/2 reciprocally promotes caspase activity, potentiates cell death, and amplifies spread among cultured IEC monolayers. Together, these data indicate that the function of CR6 NS1 is regulated by apoptotic caspases, and suggest that apoptotic cell death enables epithelial spread and persistent shedding.


Asunto(s)
Mucosa Intestinal/virología , Norovirus/patogenicidad , Proteínas no Estructurales Virales/metabolismo , Animales , Apoptosis , Infecciones por Caliciviridae/etiología , Infecciones por Caliciviridae/patología , Infecciones por Caliciviridae/virología , Caspasas/metabolismo , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Gastroenteritis/etiología , Gastroenteritis/patología , Gastroenteritis/virología , Interacciones Microbiota-Huesped , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Células Mieloides/metabolismo , Células Mieloides/patología , Células Mieloides/virología , Norovirus/genética , Norovirus/fisiología , Proteínas no Estructurales Virales/genética , Replicación Viral , Esparcimiento de Virus
6.
Cell Host Microbe ; 24(5): 665-676.e4, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30392829

RESUMEN

Viral persistence can contribute to chronic disease and promote virus dissemination. Prior work demonstrated that timely clearance of systemic murine norovirus (MNV) infection depends on cell-intrinsic type I interferon responses and adaptive immunity. We now find that the capsid of the systemically replicating MNV strain CW3 promotes lytic cell death, release of interleukin-1α, and increased inflammatory cytokine release. Correspondingly, inflammatory monocytes and neutrophils are recruited to sites of infection in a CW3-capsid-dependent manner. Recruited monocytes and neutrophils are subsequently infected, representing a majority of infected cells in vivo. Systemic depletion of inflammatory monocytes or neutrophils from persistently infected Rag1-/- mice reduces viral titers in a tissue-specific manner. These data indicate that the CW3 capsid facilitates lytic cell death, inflammation, and recruitment of susceptible cells to promote persistence. Infection of continuously recruited inflammatory cells may be a mechanism of persistence broadly utilized by lytic viruses incapable of establishing latency.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Gastroenteritis/inmunología , Células Mieloides/inmunología , Células Mieloides/virología , Norovirus/inmunología , Norovirus/patogenicidad , Inmunidad Adaptativa , Animales , Infecciones por Caliciviridae/virología , Cápside/inmunología , Muerte Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Gastroenteritis/virología , Genes Virales/genética , Células HEK293 , Proteínas de Homeodominio/genética , Interacciones Huésped-Patógeno , Humanos , Inflamación/inmunología , Interferón Tipo I/inmunología , Interleucina-1alfa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Monocitos/virología , Neutrófilos/inmunología , Neutrófilos/virología , Norovirus/genética , Carga Viral
7.
Trends Microbiol ; 26(6): 510-524, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29157967

RESUMEN

Persistent viral infections result from evasion or avoidance of sterilizing immunity, extend the timeframe of virus transmission, and can trigger disease. Prior studies in mouse models of persistent infection have suggested that ineffective adaptive immune responses are necessary for persistent viral infection. However, recent work in the murine norovirus (MNV) model of persistent infection demonstrates that innate immunity can control both early and persistent viral replication independently of adaptive immune effector functions. Interferons (IFNs) are central to the innate control of persistent MNV, apart from a role in modulating adaptive immunity. Furthermore, subtypes of IFN play distinct tissue-specific roles in innate control of persistent MNV infection. Type I IFN (IFN-α/ß) controls systemic replication, and type III IFN (IFN-λ) controls MNV persistence in the intestinal epithelium. In this article, we review recent findings in the MNV model, highlighting the role of IFNs and innate immunity in clearing persistent viral infection, and discussing the broader implications of these findings for control of persistent human infections.


Asunto(s)
Inmunidad Adaptativa , Infecciones por Caliciviridae/inmunología , Inmunidad Innata , Interferones/inmunología , Animales , Modelos Animales de Enfermedad , Interacciones Microbiota-Huesped/inmunología , Humanos , Interferón Tipo I/inmunología , Ratones , Norovirus/inmunología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...